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SUMMARY  

 

Terrestrial Laserscanning offers new possibilities to engineering geodesy in general and defor-

mation analysis in particular. Huge amounts of measured points lead to changing modelling and 

analysis approaches. Within the project "Integrated spatio-temporal modelling using correlated ob-

servations for the derivation of surveying configurations and description of deformation processes" 

(IMKAD) modeling of correlations and surfaces will be treated among others.  

The modelling of correlations within laser scanning point clouds can be realized by using synthetic 

covariance matrices. These are based on the elementary error model that consists of non-correlating, 

functional correlating and stochastic correlating error groups. This elementary error model will be 

applied on terrestrial laser scanning by defining three groups of error sources: instrumental, atmos-

pheric and object based ones. All known TLS-errors have to be classified and modelled according 

to the model of elementary errors. This contribution presents first simulation results for the Leica 

HDS 7000 measuring on small test pieces made of gypsum, aluminum and rusty steel. The deter-

mined variances and the spatial correlations of the points are estimated and discussed. Hereby, the 

mean standard deviation of an individual point within the point cloud is up to 2.5 mm and the mean 

correlation is about 0.94 neglecting the object based error sources in a first approach. 

In the second part of this paper the development of the trend component of a spatiotemporal contin-

uous collocation in order to describe areal deformations is presented. This component is modelled 

by estimated B-spline surfaces. One set of parameters used to define B-Spline curves and surfaces 

are the control points. Their number and position need to be estimated from the measurements. Here 

the determination of the optimal number of control points is regarded as a model selection problem. 

Two linear model selection criteria - the Akaike Information Criterion (AIC) and the Bayesian In-

formation Criterion (BIC) - are investigated, compared and applied to simulated data sets. Addi-

tionally, the contribution will give an outlook with respect to the combination of the before men-

tioned stochastic and the deterministic approaches with the aim to detect surface deformations in a 

stochastically correct way. 
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1. INTRODUCTION 

 

Classical deformation modelling and monitoring requires the discretization in time and space. The 

definition of epochs, the time between point measurements, can be seen as a simple discretization in 

time. With respect to space the monitoring network points may be regarded as a discretization. Es-

pecially the last aspect has to be reconsidered in a new perspective since areal measurement tech-

niques in terms of terrestrial laser scanning as well as photogrammetric methods can be applied for 

monitoring purposes nowadays (Schwieger, 2014). In this contribution the authors will focus on 

laser scanning.  

According to Kern (2003) a surface or a body determined by terrestrial laser scanning can be mod-

elled in three different ways: Either by using the original or filtered point cloud (meshed or not 

meshed), by estimating geometric primitives like cylinders or cones or by estimating freeform sur-

faces. The modelling using these options is well known and established within typical software 

packages like Cyclone or Geomagic. The problem arises when movements and deformations have 

to be detected. Different approaches concerning this task are currently under investigation. A very 

good overview is given by Ohlmann-Lauber and Schäfer (2011). Basically it has to be distinguished 

between two procedures: The first one is based directly on the measured point clouds; the second 

one realizes a model for each epoch in a first step and analyses the geometrical changes of these 

models in the second step. Most approaches are based on the second procedure. The most advanced 

idea to model surfaces is the use of freeform elements like Bézier curves and surfaces. Changes at 

some point of the Bézier surface influence the modelled surface as a whole. This may be a problem 

if local deformations have to be detected, modelled and analyzed. In contrast,B-Splines as a gener-

alization of Bézier curves and surfaces, have a local modification property as they consist of piece-

wise polynomial functions, which are defined by means of  base functions. At the transition points 

between two parts, the nodes, the p-order differentiability has to be assured. The number of poly-

nomial functions, the nodes in one part and the control points defining the transition lines are re-

quired to optimally approximate the real surface. The advantage of B-spline surfaces over Bézier 

surfaces is the ability to model deformations locally. 

Within this contribution some details of surface deformation modelling and analysis based on B-

spline surfaces are investigated: One the one hand realistic variances and co-variances among the 

scanned object points are determined; on the other hand the possibility to estimate the optimal num-

ber of control points for a given surface is investigated. Both research topics are executed within a 

cooperation project between the Technical University of Vienna (TUV) and the University of 

Stuttgart (US). 
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2. PROJECT PRESENTATION 

 

The project IMKAD deals with “integrated spatio-temporal modeling using correlated measured 

values for the derivation of surveying configurations and description of deformation processes” 

aiming at the determination of optimal scanning configurations for space-continuous kinematic de-

formation models of non-linear deformation processes based on realistic correlation modeling. The 

researchers at the US investigate the correlations using the model of elementary errors to define an 

appropriate synthetic covariance matrix. This matrix has to be evaluated by means of empirical 

measurements at test objects. In parallel the researchers at the TUV model the non-linear defor-

mation process in a collocation based approach. The deterministic part of the collocation is mod-

elled using B-spline surfaces. Based on the synthetic and evaluated correlation patterns, one- and 

multi-dimensional correlation functions will be estimated or approximated afterwards.. Exemplary 

reduced covariance matrices will be generated to achieve mathematical controllable correlations for 

the temporal and spatial analysis. The latter is of particular importance regarding the stochastic part 

of the final deformation model to be developed by the TUV as well as regarding the sensitivity of 

the scanning configurations with respect to this model to be developed by US. The separability of 

different models is another important part of the research project. The current paper focusses on the 

first working packages: the modelling of synthetic covariance matrices and special aspects of the B-

spline surface modelling. 

  

 

3. MODELLING OF CORRELATIONS  

 

3.1 Model of Elementary Errors and Synthetic Covariance Matrix 

 

Hagen (1837) and Bessel (1837) established the elementary error model. All observations are treat-

ed as random quantities; the respective random deviation is treated as a random variable with ex-

pectation value equal to zero. According to Pelzer (1985) each elementary error contains the same 

absolute value, and negative and positive signs are equally probable. Summing up all elementary 

errors the random deviation of an observation may be determined. Hence, on the assumption of an 

infinite number of elementary errors, their absolute values may be infinitely small. This leads to the 

justification of the normal distribution for one scalar observation. Handling multi-dimensional data 

requires the classification of elementary errors. Schwieger (1999) considers three types of elemen-

tary errors which are classified below:  

 p non-correlating error vectors 𝜹𝒌 , 

 m functionally correlating errors 𝜉j , 

 q stochastically correlating error vectors 𝜸𝒉, 
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𝜹𝒌 = [

δ1k

δ2k

⋮
δnk

] , k = 1,2, … , p, 𝝃 = [

ξ1

ξ2

⋮
ξm

] , and    𝜸𝒉 = [

γ1h

γ2h

⋮
γnh

] , h = 1,2, … , q ,  (1) 

 

where the index n defines the number of observations. Regarding the non-correlating errors, k speci-

fies the kind of elementary errors, whereas p describes the number of elementary errors. The index 

m represents the number of functionally correlating elementary errors 𝜉𝑗. Additionally, the index h 

involves the type of stochastically classified elementary errors and q implies the number of stochas-

tically correlating errors. 

In order to model the impact of the elementary errors on the observations, influence factors are used 

in order to build influencing matrices. These matrices contain the linearized elementary errors’ ef-

fect on the observations as well as on the covariance matrix of the observations. The influence fac-

tors can be implemented by partial derivatives, which have to be determined analytically or numeri-

cally. Schwieger (1999) induces the influences of different elementary errors on the observations by 

integrating the derivatives into influencing matrices.  

As mentioned above, three types of errors have to be considered which can now be computed as 

follows: 

 p matrices Dk for non-correlating errors, 

 one matrix F for functionally correlating errors, 

 q matrices Gh for stochastically correlating errors.  

The influencing matrices differ with regard to their structures, because several elementary errors 

affect the measurements in different ways.. The matrices Dk and Gh are diagonally structured be-

cause each elementary error of the non-correlating and stochastically correlating classes influences 

exactly one measurement quantity functionally (see eq. (6)). In contrast to these cases, matrix F is 

not structured diagonally, since one functional correlating error may impact more than one meas-

urement quantity (Schwieger, 1999). For details the authors refer to Kauker and Schwieger (2016).  

In order to determine a synthetic vector of observations, the influences of the elementary errors 

have to be summed up. This leads to:  

𝜺 = ∑ 𝑫k ∙ 𝜹𝒌 + 𝑭 ∙ 𝝃 + ∑ 𝑮h ∙ 𝜸𝒉

q

h=1

p

k=1

  . (2) 

For the construction of a synthetic covariance matrix of the observations, the covariance matrices of 

the elementary errors have to be known: 

 𝜮𝜹𝜹,𝒌: the covariance matrix for the non-correlating errors, 

 𝜮𝝃𝝃: the covariance matrix for the functionally correlating errors, 

 𝜮𝜸𝜸,𝒉: the covariance matrix for the stochastically correlating errors. 

The first two matrices are structured diagonally, the latter may be completely filled. The definition 

of variances and co-variances of all these matrices is a challenging task. Thus, they may either be 

specified by using manufacturers’ information or by using empirical values. As an alternative they 

can be estimated based on maximum errors and known parametric probability distributions. In case 
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that the standard deviation σk of an error δik is unknown, the approximation is typically based on an 

assumed normal distribution (Pelzer 1985): 

                                                   𝜎𝑘 ≈ 0.3 ⋅ 𝛿𝑖𝑘[max] .                                             (3) 

 

For further details is referred to Pelzer (1985), Schwieger (1999) and Kauker and Schwieger (2015). 

The synthetic covariance matrix can be determined by applying the variance-covariance propaga-

tion to equation (2):  

𝜮𝒍𝒍 =  ∑ 𝑫𝑘 ∙  𝜮𝜹𝜹,𝒌 ⋅ 𝑫𝑘
𝑇 

p

k=1
+ 𝑭 ∙ 𝜮ξξ ⋅ 𝑭T + ∑ 𝑮ℎ ∙ 𝜮𝛾𝛾,ℎ ⋅ 𝑮ℎ

Tq

h=1
  .            (4) 

   

By means of the covariances and the square root of the variances, the correlation coefficient 𝜌  (e.g. 

Benning, 2010) and the correlation matrix R can be determined:  

ρ =  
σ12

σ1∙σ2
   and 

1 1
.

( ) ( )
  ll

ll lldiag diag
Σ

Σ Σ
R . (5) 

 

3.2 Elementary Errors of Terrestrial Laserscanners 

 

In order to apply the elementary error model to terrestrial laser scanning measurements, all funda-

mental sources of errors must be identified first. This error sources have to be modelled as elemen-

tary errors and classified into non-correlating, stochastically correlating and functional correlating 

accordingly. On the one hand, measurements are affected by the manufacturing accuracy of the in-

strument itself. For terrestrial laserscanning three main sources exist: instrumental, atmospheric and 

object-related error sources. Table 1 presents the instrumental errors including realistic values for 

the standard deviations of the elementary errors. The first two errors are non-correlating errors, all 

the others are functionally correlating. For more details regarding the influencing matrices the au-

thors refer to Kauker and Schwieger (2016). With respect to the atmospheric errors Kauker and 

Schwieger (2016) present standard deviations for the atmospheric parameters based on empirical 

data in the vicinity of Stuttgart. Since on the one hand the spatial correlations for these stochastical-

ly correlating errors are unknown, and as on the other hand the first simulations are realized for in-

door and short distance measurements, the errors may be considered as functionally correlating and 

with clearly reduced standard deviations: σt = 0.01 °C, σp = σe = 10
-8

 hPa. The object related error 

sources are not modelled up to now. They are only classified into functionally and stochastically 

correlating errors. An overview is presented in Kauker and Schwieger (2015). In conclusion, the 

modelled covariance matrix of the observations is not complete for the time being.  

Table 1: Standard deviations of instrumental errors 

Error Sources Standard deviations 

range noise 0.5 [mm] 

angle noise  125 [µrad] 

scale error 0.300018[mm/km]  

zero point error 1.50 [mm]  

collimation axis error  5.89 [mgon] 

Terrestrial Laserscanning - Modeling of Correlations and Surface Deformations (8030)

Corinna Harmening (Austria), Stephanie Kauker (Germany), Hans-Berndt Neuner (Austria) and Volker Schwieger

(Germany)

FIG Working Week 2016

Recovery from Disaster

Christchurch, New Zealand, May 2–6, 2016



 

 

 

 

 

 

 

 

horizontal axis error 4.38 [mgon] 

vertical index error 5.31 [mgon] 

tumbling error 0.09 [mm/m] 

eccentricity of the collimation axis 0.60 [mm] 

 

3.3 Simulation of a Synthetic Covariance Matrix for Short Distances 

 

In order to evaluate and improve the model of the synthetic covariance matrix, small test objects are 

necessary. Taking into account the impact on the laser beam caused by the material, the investigated 

sample test objects consist of aluminium, gypsum, wood and rusty steel. This is the reason why the 

simulation presented in this contribution is adopted to the size of the test objects and to indoor con-

ditions. It is planned to use an aluminium and a gypsum flat board with a size of 30 cm x 25 cm. 

Therefore, the synthetic covariance matrix is generated for an equidistant angle with a point dis-

tance of 6.283 mm at 5 m scanning distance. The standard deviations of the coordinates are dis-

played in Fig. 1. They reach values around 2.5 mm for the 3D-point-error. As expected, the stand-

ard deviation is best in the middle of the board and gets worse in the direction of each corner. 

Moreover, it is clearly visible that the range between the minimum and the maximum is 1 µm only. 

This small difference is caused by the small area of the test piece and the ignorance of object based 

impacts and  can therefore be considered realistic. Nevertheless, the standard deviation values are 

particularly pessimistic, because the applied maximum errors for the variance determination of the 

elementary errors may not be well suited for the HDS 7000. The correlations are around 0.95. So 

the coordinates depend strongly on each other; they have a small tendency to decrease for longer 

distances between the points (compare Kauker and Schwieger, 2016). 

 

 
Fig. 1: Helmert’s point error in 5 m scanning distance (neglecting object related sources) 
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4. MODELING OF AREAL DEFORMATIONS 

 

4.1 Modelling of Surfaces Using B-Splines 

 

One possibility to model surfaces of scanned objects is the use of B-Spline surfaces as one repre-

sentative for freeform surfaces. One advantage of this technique is the ability to model local chang-

es of the surfaces, to be interpreted as deformations, without changing the surface at the other parts 

of the modelled surface (e.g.  Koch (2010), Schmitt et al. (2013), Harmening and Neuner (2015b)).  

A B-Spline surface S(u,v) of degree p and q is defined by its (nB+1)*(mB+1) control points Pij, the 

B-spline basis functions Ni,p(u) and Ni,q(v) as well as two knot vectors U = [u0,…ur] and V = 

[v0,…vs] (Piegl and Tiller (1997)): 

 

 

When estimating a best-fitting B-Spline surface, a variety of unknown parameters has to be deter-

mined, generally leading to a nonlinear adjustment problem. A typical approach is to fix  some of 

the parameters while estimating the other ones; e.g. the B-spline’s degrees are usually set to p = 3 

and q = 3, which is generally accepted as a reasonable choice and the knot vectors can be deter-

mined a priori according to (Piegl and Tiller (1997)). If the surface parameters u and v are also de-

termined a priori (for example according to Harmening and Neuner (2015a)), a fixed number of 

control points can be estimated in a linear adjustment. The remaining parameter type is the number 

of control points nB+1 and mB+1, whose influence on the estimation’s result is immense, as it de-

termines substantially the B-spline’s complexity. Typically, this parameter type is chosen quite arbi-

trary by using trial-and-error-procedures, wherefore in the following the applicability of model se-

lection criteria to the determination of the optimal number of control points is introduced.  

 

4.2 Determination of the Optimal Number of Control Points 

 

To determine the optimal number of control points models of different complexity need to be com-

pared: this means that model selection has to be applied. The optimal model from a given set of 

models is identified by means of the principle of parsimony, which states that a good model has to 

be as simple as possible while being a good approximation of the data (Burnham and Anderson 

(2002)). The more parameters are included into the estimation problem, the better the data is ap-

proximated, leading to a small approximation error. However, the function’s variance increases, 

which leads to an overfitting. On the contrary, models which are too simple have a large bias.  

In the following the two most popular model selection criteria, the Akaike Information Criterion 

(AIC) (Akaike, 1998) and the Bayesian/Schwarz Information Criterion (BIC/SIC), are compared 

with respect to the identification of the optimal number of control points. 

𝑺(𝑢, 𝑣) =  ∑ ∑ 𝑁𝑖,𝑝(𝑢)

𝑛𝐵

𝑗=0

𝑁𝑗,𝑞(𝑣)𝑷𝑖𝑗

𝑚𝐵

𝑖=0

 , with: u, v = [0,…,1]. (6) 
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Both criteria are built on maximum-likelihood theory, which choses those model parameters 𝛉̂ as 

optimal, which maximize the conditional probability ℒ(𝛉̂|data). Further information is available in 

Koch (1999) and Harmening and Neuner (2016). 
 
The AIC is an asymptotic efficient criterion. Those criteria assume that the truth is not included into 

the set of candidate models and aim to find asymptotically the best approximation of the truth by 

minimizing a certain distance measure between the truth and the candidate models. The AIC inter-

prets the model as well as the underlying truth as probability distributions g and f respectively and 

minimizes the relative Kullback-Leibler (KL) distance between these two distributions (see Har-

mening and Neuner (2016)). The estimation of the relative KL distance leads to the general equa-

tion for the AIC, which is given in the following: 

 

AIC =  −2 log (ℒ(𝛉̂|data)) + 2K, 

with K = 3((𝑛𝐵 + 1)(𝑚𝐵 + 1)) + 1    in case of a B-spline surface. 

 

(7) 

The log-likelihood attempts to choose the model producing the smallest approximation error, 

whereas the model’s complexity in terms of the number of parameters is penalized by means of the 

second term in equation (7) (Claeskens and Hjort (2008)). 

 

The BIC was introduced by Schwarz (1978) and is an asymptotic consistent criterion, which as-

sumes, that the truth is included into the set of candidate models and which aims to identify this true 

model for infinite sample sizes. According to Bayes’ theorem, the posteriori probabilities of the 

models are given by the prior probabilities of the models P(Mj), the unconditional likelihood of the 

data f(data) and the marginal likelihood 𝜆𝑛,𝑗(data) (Claeskens and Hjort (2008)), which results in 

the final equation: 

 

BIC ≈  −2 log (ℒ(𝜽̂|data)) + log(𝑛)𝐾. (8) 

 

Comparing equations (7) and (8) it can be seen, that the two criteria differ only slightly. AIC and 

BIC are both penalized by log-likelihood criteria, with BIC imposing a stronger penalty on the 

models’ complexity than AIC for n ≥ 8. 

 

4.3 First Results 

 

Starting point is a B-spline surface with 5 * 7 control points (nB + 1 = 5, mB + 1 = 7), which is su-

perimposed by white noise. In the following the two criteria are investigated with regard to the re-

peatability and their behavior in case of varying sample sizes, what may be related to larger moni-

tored object or to higher laser scanning resolution. For this reason, five data sets (Rep. 1 to Rep. 5) 

with varying sample sizes are generated. For each sample size, the noise generating is repeated five 

times, resulting in 25 data sets which are different realizations of the same phenomenon. 
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Table 2: Optimal number of surface control points according to AIC.  

(The surface was generated with nB+1=5, mB+1=7.)  

Sample size 900 1600 2500 3600 4900 

Rep. 1 8,11 10,11 10,11 6,10 7,9 

Rep. 2 11, 7 7,11 6,11 5,10 7,11 

Rep. 3 5,11 11,10 9,9 11,11 11,11 

Rep. 4 11,11 7,11 7,11 8,11 5,9 

Rep. 5 5,9 6,11 9,7 11,10 5,11 

Table 3: Optimal number of surface control points according to BIC.  

(The surface was generated with nB+1 = 5, mB+1 = 7.)  

Sample size 900 1600 2500 3600 4900 

Rep. 1 5,7 5,7 7,7 6,10 8,10 

Rep. 2 5,7 5,7 5,9 5,7 5,9 

Rep. 3 5,7 5,7 5,10 5,7 5,10 

Rep. 4 5,7 6,7 7,7 7,7 5,9 

Rep. 5 5,7 5,8 6,7 5,7 5,11 

 

 

The sample sizes, which were used, vary between n1=900 and n5=4900. B-spline surfaces are fitted 

through all those data sets while varying the number of control points in a range from nB + 1 = mB + 

1 = [4,…,11]. The resulting residuals are used to compute the AIC- and BIC-scores (equations (7) 

and (8)) and the number of control points producing the smallest score is marked to be optimal in 

bold letters.  

The results are presented in tables 2 and 3. For the major parts of the data sets, the number of con-

trol points chosen by AIC is significantly larger than the actual number of control points. Only few 

data sets exist, for which the AIC identifies at least one of the two parameters correctly; the correct 

combination, however, is never identified. The results which are yielded by BIC are much more 

satisfying: Especially, for the sample sizes l=900 and l=1600, the number of parameters, which is 

chosen to be optimal, is identical to the actual one. However, this result becomes instable with 

growing sample sizes. Nevertheless, in the major part of the data sets, at least one of the parameters 

is identified correctly. 

Altogether it can be stated, that BIC identifies the actual model complexity better than AIC does. 

Theoretically AIC is based on an idea which seems to be much more suitable for the concrete prob-

lem: The surface estimation is not based on the surface parameters u and v or on the knot vector U 

and V, which were used to simulate the data, but are determined independently. As a consequence, 

the truth is not contained in the set of candidate models and the concrete goal of model selection in 

this context should be to find a model which approximates the truth in an optimal manner (AIC) and 

not to identify the true model (BIC). Nevertheless, as not the asymptotic properties, but those of 

finite sample sizes are important in practice, the BIC is recommended in order to identify the opti-

mal number of control points. 
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5. SUMMARY AND FURTHER RESEARCH 

 

In summary the authors have presented two intermediate results for modelling aerial deformations 

as a whole. At first co-variances or correlations of the scanned object points are of importance for a 

correct spatial (within a deformation epoch) and temporal (between two or more deformation 

epochs) stochastic model. In this contribution the general model for a synthetic covariance matrix 

was introduced and adopted for terrestrial laser scanning. Hereby, different error sources like in-

strumental errors referred to the Leica HDS7000 and atmospheric errors were already considered; 

object related errors were neglected for the time being. For first calculations the atmospheric impact 

was simplified due to laboratory scanning conditions. It could be shown that the modelled standard 

deviations of the point cloud are about 2.5 mm which primarily depends on the value of the instru-

mental error variances and the resolution of the scanning. The correlations reach more than 0.95 and 

depend on the point distances to each other. In the future, object based impacts have to be integrated 

and the synthetic covariance matrix has to be evaluated by means of empirical values.  

At second a model for the deterministic part of the time-related deformations was developed based 

on B-spline surfaces. B-spline surfaces depend on multiple parameters. In this paper the authors 

concentrated on the optimization of the number of control points. Two criteria, AIC and BIC, were 

used to compute the optimal number of control points that should coincide with the given truth that 

was randomized before by white noise. Based on the simulated data, the BIC put out to be the more 

appropriate method to determine the optimal number of control points. Nevertheless the results 

were not completely satisfying. This yields to the task of identifying additional criteria which are 

based on the Vapnik-Chervonenski dimension (Vapnik, 1998). Additionally it has to be mentioned 

that correlated data, that is really available, will cause problems with respect to the optimization so 

that additional research e.g. with respect to the adoption of decorrelation techniques is required. 

These intermediate results are cornerstones on the way towards a complete deformation model that 

includes deterministic and stochastic parts. The next steps will be the completion of the synthetic 

covariance matrix as well as the deformation model. For the second part correlation pattern have to 

be extracted from the evaluated data. These patterns will additionally lead to the support of a sensi-

tivity analysis with respect to expected deformation models for e.g. barrages and dams. 
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